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the mth layer, say P~ and P~, which must be computed. 
This requires two equations relating PA and P~ to the 
corresponding quantities for the layers ( m -  1) and (m-2) ,  
respectively. These two equations (which are to hold for 
all m) must be mutually consistent. That is, given values of 
say, P~ and pB5 we can compute P~ and P7 B either by a single 
application of the equation relating the (m) and ( m - 2 )  
layers, or by repeated application of the equation relating 
the (m) and ( m -  1) layers and we must of course get the 
same answer either way. The difference equations given by 
Sabine are not consistent in this sense. 

The possibility of this sort of internal inconsistency arises 
from the fact that the problem has been overspecified. The 
diffraction effects are determined by the relative positions 
of the layers, and the relative positions are determined by 

the stacking sequence written in terms of Frank's (1951) 
transition symbols A and "7. Allowing for normalization 
of probabilities there is then only one variable, Pm A, the 
probability that the ruth transition be A ; only one difference 
equation need be written, and the possibility of internal in- 
consistency thus disappears. However, the construction of 
a suitable equation for the problem in question appears to 
be very difficult. 
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An objection to the treatment of the problem of the diffraction of X-rays by crystals containing condensed 
sheets of interstitial atoms is discussed. 

Johnson (1968) has concluded that my calculation of the 
diffraction effects produced by condensed sheets of inter- 
stitial atoms in a face-centred cubic crystal is in error. 

The calculation is certainly not exact in that, as Johnson 
points out, vectors originating on condensed layers have 
been ignored. This should not seriously affect the results 
for ~ small in that in the computation of the Patterson 
function for any value of the interlayer spacing the numbers 
of vectors from uncondensed to uncondensed layers, from 
uncondensed layers to condensed layers and condensed to 
condensed layers are in the ratio (1-002:2~(1--00:0~2 , and 
the major contribution to the average value of the structure 
factor product will come from the product for uncondensed 
to uncondensed layers. Warren (1963) makes a less severe 
approximation in his treatment of the double deformation 
fault problem, by neglecting terms due to vectors from layers 
in a fault to those in another fault. 

The second difficulty is more serious and could vitiate the 
calculation, although Sato (1966) solved the triple fault 
problem by difference equations and a recent calculation 
by Kakinoki (1967) confirms his result as well as Johnson's 
result for the double deformation fault problem. 

If Johnson's statement that the relationship between the 
mth and (m-2 ) th  layer should be the same whether 
obtained directly or by applying the relationship between 
the ruth and (m - 1)th layers twice then only the deformation 
fault problem (Paterson, 1952) can be treated by the method 
of probability trees used by Warren (1959) since the rela- 
tionship between the ( m -  2)th and ( m -  1)th layer is identical 
in all problems. To illustrate this the four classic problems 
will be considered. In each case ct is the appropriate faulting 
parameter. 

* Present address: A.A.E.C. Research Establishment, Lucas 
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(1) Growth faults in h.c.p, crystals (Wilson, 1942) 
Wilson's difference equation is generated by the trees 

m-2 m-1 m 1 - a  

and its cyclic permutations through the relations 

_ B 2 C Pg = ( 1 - ~ ) e ~  2+ct(1-~)em_2+ct Pro-2 (1.1) 

pA m--1 =(1 --~)P c - 2 q- °cPBm - 2 (1.2) 

A ~ p c  - 1 (1.3) P m - 2 + P m - 2 +  m--2-- • 

When the boundary conditions 
P 6 t = I , P ~ = 0  and P6~=0, P~=½ are used Wilson's 

result is obtained even though the second boundary condi- 
tion is inconsistent with the tree. 

(2) Growth faults in f.c.c, crystals (Paterson, 1952) 
Paterson's difference equation is generated by the tree 

(also used by Sabine, 1966) 

m-2 m-1 m 

1 - a  C 

'l" ~-""-" B ' ~  A 
A ~ " - " ' a  B 

and its cyclic permutations through the relations 

P~ =ctP~_2+(1-ct)EP~_2+ct(1-~)PC_ 2 (2.1) 

and (1.2) and (1.3). Using identical boundary conditions to (1) 
Paterson's result is obtained. 
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(3) Single deformation fault in f.c.c, crystals (Paterson, 1952). 
In this case the tree is 

m-2 m-1 m 
- C 

plus its cyclic permutations and Paterson's equation is 
given by 

P~ = 2:¢(1 -~x)P~ 2+(1-oOxeBm_2+~2ec ( 3 . 1 )  - , - - 2  

plus (1.2) and (1.3.) Application of boundary conditions 
P6~= 1, e l  A=0 and P0~= 1, e ~ = ~ ;  p c =  1 e ~ =  1 - ~ ,  which 
are consistent with the tree give Paterson's solution. 
Equation (3.1) is also obtained by the application of (1.2) 
twice and (1.3) and is the equation always obtained when 
(1.2) is applied twice. 

(4) Deformation faults in h.c.p, crystals (Christian, 1956). 
For this fault the tree is 

m-2 m-1 m 
,i.o. 

C 

,4 

plus its cyclic permutations and Christian's difference 
equation is found from 

P~ =(1 2~+2~x2)P~_2+cx(l-cx ) pB p c  - -  (m--2  "1- ,---2) (4.1) 

and (1.3). In this case there is no relation between adjacent 
layers however. Warren (1958) used (1.2) for the combined 
deformation and growth fault in h.c.p, crystals. 

The boundary conditions 

P ~ = I , P ~ - - O ;  PoA=O,P~--½ 

lead to Christian's result. 
It seems therefore that if Johnson's conclusion that the 

problem is overspecified is correct only one of these problems 
can be solved by probability tree methods. 
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A method is presented for determining the effectiveness of proportional counter descrimination against 
harmonic radiation passed by a crystal monochromator in X-ray studies. A method is also given for correc- 
ting for this contamination in thermal diffuse scattering experiments where such effects may be important. 

When a crystal monochromator  is employed in X-ray 
measurements a proportional counter and pulse height 
analyzer (PHA) may be used to discriminate against the 
harmonic radiation passed by the monochromator.  An 
oriented single crystal in the sample position can be used 
to determine the effectiveness of this discrimination with 
the method to be described. This method, applied to three 
commercially available proportional counter systems, has 
shown that such systems have varied capabilities in this 
regard, and that effective discrimination cannot be reliably 
predicted on the basis of electronic pulse amplitude dis- 
crimination alone. Finally, a method is described for cor- 
recting the count rate in those situations where the dis- 
crimination against the harmonic radiation proves inade- 
quate. 

We consider only the 3`/2 harmonic, where 3. is the design 
wavelength of the monochromator.  If the 3./2 diffraction 
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vector is set on a point in the reciprocal lattice of the sample 
crystal in such a way that the 2 diffraction vector is not 
on a reciprocal lattice point then the 3./2 radiation will 
be Bragg reflected and the scattering of the 2 radiation 
will be relatively much weaker. Take as the quantity of 
interest the fraction f of the incident 3./2 radiation which 
results in pulse heights lying within the PHA window used 
for 2 pulses. The wavelength dependence of absorption is 
used to de terminefas  follows. Let ~1 and ~2 be the fractions 
of the 2 and 3`/2 radiation, respectively, which is transmitted 
by an absorbing foil. The count rate (0cl)oxp is measured with 
foil in place, using the PHA window customarily employed 
for the 3. radiation. Similarly Iexo is measured at the same 
point without the foil. Then 

(~l)°xo = ~111 + ~t2fI2 
loxp = 11 + fI2 

where 11 and f/2 are the 3̀  and 2/2 contributions respectively. 
Eliminating I~ gives 

f12= (°~l)e-xP -- :¢l!e~P 
~X 2 - -  (X 1 


